Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560995

RESUMEN

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method, and the choice of genomic regions 1-3. Here, we address these issues by analyzing genomes of 363 bird species 4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a remarkable degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Paleogene (K-Pg) boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that challenge modeling due to extreme GC content, variable substitution rates, incomplete lineage sorting, or complex evolutionary events such as ancient hybridization. Assessment of the impacts of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates, and relative brain size following the K-Pg extinction event, supporting the hypothesis that emerging ecological opportunities catalyzed the diversification of modern birds. The resulting phylogenetic estimate offers novel insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.

2.
Evolution ; 78(1): 53-68, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37862587

RESUMEN

Rivers frequently delimit the geographic ranges of species in the Amazon Basin. These rivers also define the boundaries between genetic clusters within many species, yet river boundaries have been documented to break down in headwater regions where rivers are narrower. To explore the evolutionary implications of headwater contact zones in Amazonia, we examined genetic variation in the Blue-capped Manakin (Lepidothrix coronata), a species previously shown to contain several genetically and phenotypically distinct populations across the western Amazon Basin. We collected restriction site-associated DNA sequence data (RADcap) for 706 individuals and found that spatial patterns of genetic structure indicate several rivers, particularly the Amazon and Ucayali, are dispersal barriers for L. coronata. We also found evidence that genetic connectivity is elevated across several headwater regions, highlighting the importance of headwater gene flow for models of Amazonian diversification. The headwater region of the Ucayali River provided a notable exception to findings of headwater gene flow by harboring non-admixed populations of L. coronata on opposite sides of a < 1-km-wide river channel with a known dynamic history, suggesting that additional prezygotic barriers may be limiting gene flow in this region.


Asunto(s)
Passeriformes , Humanos , Animales , Passeriformes/genética , Brasil , Filogenia , Evolución Biológica , ADN Mitocondrial/genética , Ríos
3.
Mol Ecol ; 33(5): e16990, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37208829

RESUMEN

Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human-mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human-mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human-mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human-mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.


Asunto(s)
Colinus , Hibridación Genética , Animales , Humanos , Ecosistema , Evolución Biológica , Cuba
4.
Proc Biol Sci ; 290(2010): 20230657, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37909084

RESUMEN

A universal paradigm describing patterns of speciation across the tree of life has been debated for decades. In marine organisms, inferring patterns of speciation using contemporary and historical patterns of biogeography is challenging due to the deficiency of species-level phylogenies and information on species' distributions, as well as conflicting relationships between species' dispersal, range size and co-occurrence. Most research on global patterns of marine fish speciation and biogeography has focused on coral reef or pelagic species. Carangoidei is an ecologically important clade of marine fishes that use coral reef and pelagic environments. We used sequence capture of 1314 ultraconserved elements (UCEs) from 154 taxa to generate a time-calibrated phylogeny of Carangoidei and its parent clade, Carangiformes. Age-range correlation analyses of the geographical distributions and divergence times of sister species pairs reveal widespread sympatry, with 73% of sister species pairs exhibiting sympatric geographical distributions, regardless of node age. Most species pairs coexist across large portions of their ranges. We also observe greater disparity in body length and maximum depth between sympatric relative to allopatric sister species. These and other ecological or behavioural attributes probably facilitate sympatry among the most closely related carangoids.


Asunto(s)
Peces , Simpatría , Animales , Filogenia , Arrecifes de Coral , Especiación Genética
5.
G3 (Bethesda) ; 13(8)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37130071

RESUMEN

The clapper rail (Rallus crepitans), of the family Rallidae, is a secretive marsh bird species that is adapted for high salinity habitats. They are very similar in appearance to the closely related king rail (R. elegans), but while king rails are limited primarily to freshwater marshes, clapper rails are highly adapted to tolerate salt marshes. Both species can be found in brackish marshes where they freely hybridize, but the distribution of their respective habitats precludes the formation of a continuous hybrid zone and secondary contact can occur repeatedly. This system, thus, provides unique opportunities to investigate the underlying mechanisms driving their differential salinity tolerance as well as the maintenance of the species boundary between the 2 species. To facilitate these studies, we assembled a de novo reference genome assembly for a female clapper rail. Chicago and HiC libraries were prepared as input for the Dovetail HiRise pipeline to scaffold the genome. The pipeline, however, did not recover the Z chromosome so a custom script was used to assemble the Z chromosome. We generated a near chromosome level assembly with a total length of 994.8 Mb comprising 13,226 scaffolds. The assembly had a scaffold N50 was 82.7 Mb, L50 of four, and had a BUSCO completeness score of 92%. This assembly is among the most contiguous genomes among the species in the family Rallidae. It will serve as an important tool in future studies on avian salinity tolerance, interspecific hybridization, and speciation.


Asunto(s)
Ecosistema , Genoma , Femenino , Animales , Humedales , Aves/genética
6.
mSystems ; 8(3): e0017923, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37199998

RESUMEN

Bacterioplankton of the SAR11 clade are the most abundant marine microorganisms and consist of numerous subclades spanning order-level divergence (Pelagibacterales). The assignment of the earliest diverging subclade V (a.k.a. HIMB59) to the Pelagibacterales is highly controversial, with multiple recent phylogenetic studies placing them completely separate from SAR11. Other than through phylogenomics, subclade V has not received detailed examination due to limited genomes from this group. Here, we assessed the ecogenomic characteristics of subclade V to better understand the role of this group in comparison to the Pelagibacterales. We used a new isolate genome, recently released single-amplified genomes and metagenome-assembled genomes, and previously established SAR11 genomes to perform a comprehensive comparative genomics analysis. We paired this analysis with the recruitment of metagenomes spanning the open ocean, coastal, and brackish systems. Phylogenomics, average amino acid identity, and 16S rRNA gene phylogeny indicate that SAR11 subclade V is synonymous with the ubiquitous AEGEAN-169 clade and support the contention that this group represents a taxonomic family. AEGEAN-169 shared many bulk genome qualities with SAR11, such as streamlining and low GC content, but genomes were generally larger. AEGEAN-169 had overlapping distributions with SAR11 but was metabolically distinct from SAR11 in its potential to transport and utilize a broader range of sugars as well as in the transport of trace metals and thiamin. Thus, regardless of the ultimate phylogenetic placement of AEGEAN-169, these organisms have distinct metabolic capacities that likely allow them to differentiate their niche from canonical SAR11 taxa. IMPORTANCE One goal of marine microbiologists is to uncover the roles various microorganisms are playing in biogeochemical cycles. Success in this endeavor relies on differentiating groups of microbes and circumscribing their relationships. An early-diverging group (subclade V) of the most abundant bacterioplankton, SAR11, has recently been proposed as a separate lineage that does not share a most recent common ancestor. But beyond phylogenetics, little has been done to evaluate how these organisms compare with SAR11. Our work leverages dozens of new genomes to demonstrate the similarities and differences between subclade V and SAR11. In our analysis, we also establish that subclade V is synonymous with a group of bacteria established from 16S rRNA gene sequences, AEGEAN-169. Subclade V/AEGEAN-169 has clear metabolic distinctions from SAR11 and their shared traits point to remarkable convergent evolution if they do not share a most recent common ancestor.


Asunto(s)
Alphaproteobacteria , Agua de Mar , Agua de Mar/microbiología , Filogenia , ARN Ribosómico 16S/genética , Organismos Acuáticos , Bacterias/genética
7.
ISME J ; 17(4): 620-629, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739346

RESUMEN

The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.


Asunto(s)
Alphaproteobacteria , Aguas Salinas , Filogenia , Océanos y Mares , Genómica , Evolución Biológica , Alphaproteobacteria/genética , Agua de Mar
8.
G3 (Bethesda) ; 13(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36683458

RESUMEN

North American sunfishes (Family Centrarchidae) are among the most popular sportfish throughout the United States and Canada. Despite the popularity of sunfishes, their ecological importance, and their extensive stocking and aquacultural history, few molecular studies have examined the evolutionary relationships and species boundaries among members of this group, many of which are known to hybridize. Here, we describe a chromosome-scale genome assembly representing Bluegill (Lepomis macrochirus), one of the most widespread centrarchid species. By combining long-read, Oxford Nanopore sequencing data with short-insert, whole-genome and HiC sequence reads, we produced an assembly (Lm_LA_1.1) having a total length of 889 Mb including 1,841 scaffolds and having a scaffold N50 of 36 Mb, L50 of 12, N90 of 29 Mb, and L90 of 22. We detected 99% (eukaryota_odb10) and 98% (actinopterygii_odb10) universal single-copy orthologs (BUSCOs), and ab initio gene prediction performed using this new assembly identified a set of 17,233 genes that were supported by external (OrthoDB v10) data. This new assembly provides an important addition to the growing set of assemblies already available for spiny-rayed fishes (Acanthomorpha), and it will serve as a resource for future studies that focus on the complex evolutionary history of centrarchids.


Asunto(s)
Perciformes , Animales , Perciformes/genética , Peces/genética , Genoma
9.
Ticks Tick Borne Dis ; 14(2): 102090, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36446165

RESUMEN

The Gulf Coast tick, Amblyomma maculatum, inhabits the Southeastern states of the USA bordering the Gulf of Mexico, Mexico, and other Central and South American countries. More recently, its U.S. range has extended West to Arizona and Northeast to New York state and Connecticut. It is a vector of Rickettsia parkeri and Hepatozoon americanum. This tick species has become a model to study tick/Rickettsia interactions. To increase our knowledge of the basic biology of A. maculatum we report here a draft genome of this tick and an extensive functional classification of its proteome. The DNA from a single male tick was used as a genomic source, and a 10X genomics protocol determined 28,460 scaffolds having equal or more than 10 Kb, totaling 1.98 Gb. The N50 scaffold size was 19,849 Kb. The BRAKER pipeline was used to find the protein-coding gene boundaries on the assembled A. maculatum genome, discovering 237,921 CDS. After trimming and classifying the transposable elements, bacterial contaminants, and truncated genes, a set of 25,702 were annotated and classified as the core gene products. A BUSCO analysis revealed 83.4% complete BUSCOs. A hyperlinked spreadsheet is provided, allowing browsing of the individual gene products and their matches to several databases.


Asunto(s)
Ixodidae , Rickettsia , Garrapatas , Animales , Masculino , Amblyomma/genética , Ixodidae/genética , Ixodidae/microbiología , Rickettsia/genética , Garrapatas/genética , Genómica , ARN
10.
Nat Ecol Evol ; 6(8): 1211-1220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835827

RESUMEN

Spiny-rayed fishes (Acanthomorpha) dominate modern marine habitats and account for more than a quarter of all living vertebrate species. Previous time-calibrated phylogenies and patterns from the fossil record explain this dominance by correlating the origin of major acanthomorph lineages with the Cretaceous-Palaeogene mass extinction. Here we infer a time-calibrated phylogeny using ultraconserved elements that samples 91.4% of all acanthomorph families and investigate patterns of body shape disparity. Our results show that acanthomorph lineages steadily accumulated throughout the Cenozoic and underwent a significant expansion of among-clade morphological disparity several million years after the end-Cretaceous. These acanthomorph lineages radiated into and diversified within distinct regions of morphospace that characterize iconic lineages, including fast-swimming open-ocean predators, laterally compressed reef fishes, bottom-dwelling flatfishes, seahorses and pufferfishes. The evolutionary success of spiny-rayed fishes is the culmination of multiple species-rich and phenotypically disparate lineages independently diversifying across the globe under a wide range of ecological conditions.


Asunto(s)
Biodiversidad , Peces , Animales , Evolución Biológica , Extinción Biológica , Peces/anatomía & histología , Fósiles
11.
Mol Phylogenet Evol ; 175: 107559, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35803448

RESUMEN

As phylogenomics focuses on comprehensive taxon sampling at the species and population/subspecies levels, incorporating genomic data from historical specimens has become increasingly common. While historical samples can fill critical gaps in our understanding of the evolutionary history of diverse groups, they also introduce additional sources of phylogenomic uncertainty, making it difficult to discern novel evolutionary relationships from artifacts caused by sample quality issues. These problems highlight the need for improved strategies to disentangle artifactual patterns from true biological signal as historical specimens become more prevalent in phylogenomic datasets. Here, we tested the limits of historical specimen-driven phylogenomics to resolve subspecies-level relationships within a highly polytypic family, the New World quails (Odontophoridae), using thousands of ultraconserved elements (UCEs). We found that relationships at and above the species-level were well-resolved and highly supported across all analyses, with the exception of discordant relationships within the two most polytypic genera which included many historical specimens. We examined the causes of discordance and found that inferring phylogenies from subsets of taxa resolved the disagreements, suggesting that analyzing subclades can help remove artifactual causes of discordance in datasets that include historical samples. At the subspecies-level, we found well-resolved geographic structure within the two most polytypic genera, including the most polytypic species in this family, Northern Bobwhites (Colinus virginianus), demonstrating that variable sites within UCEs are capable of resolving phylogenetic structure below the species level. Our results highlight the importance of complete taxonomic sampling for resolving relationships among polytypic species, often through the inclusion of historical specimens, and we propose an integrative strategy for understanding and addressing the uncertainty that historical samples sometimes introduce to phylogenetic analyses.


Asunto(s)
Genoma , Genómica , Animales , Evolución Biológica , Genómica/métodos , Filogenia , Codorniz
12.
Mol Phylogenet Evol ; 173: 107525, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577299

RESUMEN

Although recent molecular phylogenetic analyses of Lepidothrix manakins (family Pipridae) have helped clarify their evolutionary relationships, the placement of several lineages remains in question because of low or conflicting branch support. In particular, the relationship of L. coronata to other members of the genus and relationships within the L. nattereri + L. vilasboasi + L. iris clade have been difficult to resolve. We used RADcap to collect restriction site-associated DNA sequence data and estimate the first subspecies-level phylogeny of the genus Lepidothrix (17 of 18 currently recognized subspecies), and we included extensive geographic representation of the widespread and phenotypically variable L. coronata. We found strong support for the phylogenetic position and monophyly of L. coronata, and we resolved two clades separated by the Andes that, along with previous divergence time estimates and our assessment of morphological and vocal evidence, suggest the presence of two biological species: Velvety Manakin (L. velutina) west of the Andes and Blue-capped Manakin (L. coronata) east of the Andes. Species-level relationships within the L. nattereri + L. vilasboasi + L. iris clade remained poorly resolved in concatenated and coalescent-based analyses, with SNAPP analyses suggesting that the lack of reciprocal monophyly is due to extensive allele sharing among these taxa. Finally, we confirmed a previously documented hybrid between L. coronata and L. suavissima as an F1 individual, consistent with the view that hybridization between these two species is a rare event and that postmating reproductive barriers prevent successful backcrossing.


Asunto(s)
Passeriformes , Animales , Secuencia de Bases , Evolución Biológica , ADN Mitocondrial/genética , Hibridación Genética , Passeriformes/genética , Filogenia , Análisis de Secuencia de ADN
13.
Evolution ; 76(3): 455-475, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34626500

RESUMEN

Secondary contact between species often results in the formation of a hybrid zone, with the eventual fates of the hybridizing species dependent on evolutionary and ecological forces. We examine this process in the Amazon Basin by conducting the first genomic and phenotypic characterization of the hybrid zone formed after secondary contact between two obligate army-ant-followers: the White-breasted Antbird (Rhegmatorhina hoffmannsi) and the Harlequin Antbird (Rhegmatorhina berlepschi). We found a major geographic displacement (∼120 km) between the mitochondrial and nuclear clines, and we explore potential hypotheses for the displacement, including sampling error, genetic drift, and asymmetric cytonuclear incompatibilities. We cannot exclude roles for sampling error and genetic drift in contributing to the discordance; however, the data suggest expansion and unidirectional introgression of hoffmannsi into the distribution of berlepschi.


Asunto(s)
Hibridación Genética , Passeriformes , Animales , Evolución Biológica , ADN Mitocondrial/genética , Flujo Genético , Passeriformes/genética
14.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34849784

RESUMEN

Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10× linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates.


Asunto(s)
Genoma , Néctar de las Plantas , Animales , Flores/genética , Genómica , Filogenia
15.
Elife ; 102021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061026

RESUMEN

A voucher is a permanently preserved specimen that is maintained in an accessible collection. In genomics, vouchers serve as the physical evidence for the taxonomic identification of genome assemblies. Unfortunately, the vast majority of vertebrate genomes stored in the GenBank database do not refer to voucher specimens. Here, we urge researchers generating new genome assemblies to deposit voucher specimens in accessible, permanent research collections, and to link these vouchers to publications, public databases, and repositories. We also encourage scientists to deposit voucher specimens in order to recognize the work of local field biologists and promote a diverse and inclusive knowledge base, and we recommend best practices for voucher deposition to prevent taxonomic errors and ensure reproducibility and legality in genetic studies.


Asunto(s)
Bancos de Muestras Biológicas , Bases de Datos Genéticas , Genómica , Manejo de Especímenes , Animales , Exactitud de los Datos , Humanos , Filogenia , Reproducibilidad de los Resultados
16.
Syst Biol ; 71(1): 78-92, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097063

RESUMEN

The Neotropics harbor the most species-rich freshwater fish fauna on the planet, but the timing of that exceptional diversification remains unclear. Did the Neotropics accumulate species steadily throughout their long history, or attain their remarkable diversity recently? Biologists have long debated the relative support for these museum and cradle hypotheses, but few phylogenies of megadiverse tropical clades have included sufficient taxa to distinguish between them. We used 1288 ultraconserved element loci spanning 293 species, 211 genera, and 21 families of characoid fishes to reconstruct a new, fossil-calibrated phylogeny and infer the most likely diversification scenario for a clade that includes a third of Neotropical fish diversity. This phylogeny implies paraphyly of the traditional delimitation of Characiformes because it resolves the largely Neotropical Characoidei as the sister lineage of Siluriformes (catfishes), rather than the African Citharinodei. Time-calibrated phylogenies indicate an ancient origin of major characoid lineages and reveal a much more recent emergence of most characoid species. Diversification rate analyses infer increased speciation and decreased extinction rates during the Oligocene at around 30 Ma during a period of mega-wetland formation in the proto-Orinoco-Amazonas. Three species-rich and ecomorphologically diverse lineages (Anostomidae, Serrasalmidae, and Characidae) that originated more than 60 Ma in the Paleocene experienced particularly notable bursts of Oligocene diversification and now account collectively for 68% of the approximately 2150 species of Characoidei. In addition to paleogeographic changes, we discuss potential accelerants of diversification in these three lineages. While the Neotropics accumulated a museum of ecomorphologically diverse characoid lineages long ago, this geologically dynamic region also cradled a much more recent birth of remarkable species-level diversity. [Biodiversity; Characiformes; macroevolution; Neotropics; phylogenomics; ultraconserved elements.].


Asunto(s)
Bagres , Characiformes , Animales , Biodiversidad , Fósiles , Filogenia
17.
Mol Phylogenet Evol ; 162: 107206, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34015447

RESUMEN

Several bird taxa have been recently described or elevated to full species and almost twice as many bird species than are currently recognized may exist. Defining species is one of the most basic and important issues in biological science because unknown or poorly defined species hamper subsequent studies. Here, we evaluate the species limits and evolutionary history of Tunchiornis ochraceiceps-a widespread forest songbird that occurs in the lowlands of Central America, Chocó and Amazonia-using an integrative approach that includes plumage coloration, morphometrics, vocalization and genomic data. The species has a relatively old crown age (~9 Ma) and comprises several lineages with little, if any, evidence of gene flow among them. We propose a taxonomic arrangement composed of four species, three with a plumage coloration diagnosis and one deeply divergent cryptic species. Most of the remaining lineages have variable but unfixed phenotypic characters despite their relatively old origin. This decoupling of genomic and phenotypic differentiation reveals a remarkable case of phenotypic conservatism, possibly due to strict habitat association. Lineages are geographically delimited by the main Amazonian rivers and the Andes, a pattern observed in studies of other understory upland forest Neotropical birds, although phylogenetic relationships and divergence times among populations are idiosyncratic.


Asunto(s)
Variación Genética , Genómica , Filogenia , Pájaros Cantores/clasificación , Pájaros Cantores/genética , Animales , Flujo Génico , Fenotipo
19.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33693604

RESUMEN

The lack of genomic resources for tropical canopy trees is impeding several research avenues in tropical forest biology. We present genome assemblies for two Neotropical hardwood species, Jacaranda copaia and Handroanthus (formerly Tabebuia) guayacan, that are model systems for research on tropical tree demography and flowering phenology. For each species, we combined Illumina short-read data with in vitro proximity-ligation (Chicago) libraries to generate an assembly. For Jacaranda copaia, we obtained 104X physical coverage and produced an assembly with N50/N90 scaffold lengths of 1.020/0.277 Mbp. For H. guayacan, we obtained 129X coverage and produced an assembly with N50/N90 scaffold lengths of 0.795/0.165 Mbp. J. copaia and H. guayacan assemblies contained 95.8% and 87.9% of benchmarking orthologs, although they constituted only 77.1% and 66.7% of the estimated genome sizes of 799 and 512 Mbp, respectively. These differences were potentially due to high repetitive sequence content (>59.31% and 45.59%) and high heterozygosity (0.5% and 0.8%) in each species. Finally, we compared each new assembly to a previously sequenced genome for Handroanthus impetiginosus using whole-genome alignment. This analysis indicated extensive gene duplication in H. impetiginosus since its divergence from H. guayacan.


Asunto(s)
Bignoniaceae , Tabebuia , Bignoniaceae/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Tabebuia/genética , Árboles/genética
20.
Mol Ecol ; 30(6): 1364-1380, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217068

RESUMEN

During the Last Glacial Maximum (LGM), global sea levels were 120-130 m lower than today, resulting in the emergence of most continental shelves and extirpation of subtidal organisms from these areas. During the interglacial periods, rapid inundation of shelf regions created a dynamic environment for coastal organisms, such as the charismatic leafy seadragon (Phycodurus eques, Syngnathidae), a brooder with low dispersal ability inhabiting kelp beds in temperate Australia. Reconstructions of the palaeoshoreline revealed that the increase of shallow areas since the LGM was not uniform across the species' range and we investigated the effects of these asymmetries on genetic diversity and structuring. Using targeted capture of 857 variable ultraconserved elements (UCEs, 2,845 single nucleotide polymorphisms) in 68 individuals, we found that the regionally different shelf topographies were paralleled by contrasting population genetic patterns. In the west, populations may not have persisted through sea-level lows because shallow seabed was very limited. Shallow genetic structure, weak expansion signals and a westward cline in genetic diversity indicate a postglacial recolonization of the western part of the range from a more eastern location following sea-level rise. In the east, shallow seabed persisted during the LGM and increased considerably after the flooding of large bays, which resulted in strong demographic expansions, deeper genetic structure and higher genetic diversity. This study suggests that postglacial flooding with rising sea levels produced locally variable signatures in colonizing populations.


Asunto(s)
Peces , Genética de Población , Animales , Australia , Inundaciones , Variación Genética , Kelp , Filogeografía , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...